7x^2+4=235

Simple and best practice solution for 7x^2+4=235 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x^2+4=235 equation:



7x^2+4=235
We move all terms to the left:
7x^2+4-(235)=0
We add all the numbers together, and all the variables
7x^2-231=0
a = 7; b = 0; c = -231;
Δ = b2-4ac
Δ = 02-4·7·(-231)
Δ = 6468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6468}=\sqrt{196*33}=\sqrt{196}*\sqrt{33}=14\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{33}}{2*7}=\frac{0-14\sqrt{33}}{14} =-\frac{14\sqrt{33}}{14} =-\sqrt{33} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{33}}{2*7}=\frac{0+14\sqrt{33}}{14} =\frac{14\sqrt{33}}{14} =\sqrt{33} $

See similar equations:

| 15(2.5+x+82.5x=3 | | 15k-14k=19 | | 9d+-30=15 | | 12-0.2=25+0.7x | | 3x+20+5=55 | | 13t=–182 | | 5z+-3=12 | | 7(1+3x)+1=3(-3+2x)*2 | | 11b+6≥=14b+3 | | 2(5x+10)+5=55 | | r/4=28 | | 4a^2–16=0 | | 20–3x=2 | | 10)x+4=64 | | 21x-((3(2x-3)))*2=-9 | | 9x-116=108+2x | | 9=v/5. | | (7(1+3x))/2+1=3(-3+2x) | | 0.5/12=x/48 | | 3+x+4x=5(x+2)-7 | | X+x+3+2x-5=14 | | H(-2)=3x+3 | | 77=7g−–21 | | 6y=36=y/2 | | 9s+s=20 | | 2x-21=-11 | | 5*z=35. | | 14u-13u=7 | | 0.25(x+8)=84 | | 13+7d=27 | | 8)x+14=46 | | 4f+4=–8+7f |

Equations solver categories